Metallic Fuel Development

Steven L. Hayes
Argonne National Laboratory

AFCI Semi-Annual Review Meeting Santa Fe, NM August 27, 2003

Outline of Presentation

Fabrication

- Metallic Fuel Fabrication Process Development
- Test Fuels and Sample Production
- Rodlet Fabrication (Metallic and Nitride Fuels)
- Characterization
 - Chemical Analysis & Isotopics on Fuels
 - Microstructural Analysis
 - Thermal Analysis
 - Fuel-Cladding Compatibility
- Irradiation Test Fabrication and Assembly
- Postirradiation Examination

Metallic Fuel Fabricated by Arc-Casting

No Americium Loss During Arc-Casting

Metallic Fuel Fabrication

Metallic Fuels for AFC-1 Tests

- Arc-Cast Pins Sectioned to Provide
 - Fuel specimens for irradiation tests
 - Samples for chemical and isotopic analysis
 - Samples for characterization
 - Microstructural analysis (XRD/SEM)
 - Thermal Analysis (DSC/DTA/TGA)
 - Cladding compatibility testing (diffusion couples)

Metallic Fuel Rodlet Fabrication

- 1. Fabricate jackets; load and settle sodium.
- 2. Load fuel on top of solid sodium; weld top end plug.
- 3. Weld inspection: visual exam, He leak testing, radiography.
- 4. Sodium heated above melting temperature; fuel column settled to bottom end plug.
- 5. Radiographic inspection of sodium level and slug position.
- 6. Fuel rodlet heated to ~500°C; sodium wets fuel and cladding.
- 7. Radiographic inspection of final slug position and sodium height.

Fuel Rodlet Fabrication Status

- AFC-1B,D non-fertile metallic fuel rodlet fab. completed 1/03
 - Pu-12Am-40Zr (2)
 - Pu-10Am-10Np-40Zr
 - Pu-40Zr
 - Pu-60Zr

- AFC-1F low-fertile metallic fuel rodlet fab. completed 8/03
 - U-29Pu-4Am-2Np-30Zr (2)
 - U-25Pu-3Am-2Np-40Zr (2)
 - U-34Pu-4Am-2Np-20Zr
 - U-28Pu-7Am-30Zr
- AFC-1A,C non-fertile nitride fuel rodlets fabricated 4/03
 - Rodlets not usable due to pellet fragmentation
 - AFC-1C (high BU) eliminated
 - AFC-1A consolidated with AFC-1E to AFC-1Æ
- AFC-1Æ non/low-fertile nitride fuel rodlet fabrication in progress but will likely not meet 09/03 milestone

Nitride Rodlet Fabrication Demonstrated

Metallic Fuel Characterization

- Non-Fertile Metallic Alloys (FY03 complete)
 - Pu-12Am-40Zr
 - Pu-10Np-40Zr
 - Pu-10Am-10Np-40Zr
 - Pu-40Zr
 - Pu-60Zr
- Low-Fertile Metallic Alloys (in progress)
 - U-29Pu-4Am-2Np-30Zr
 - U-25Pu-3Am-2Np-40Zr
 - U-34Pu-4Am-2Np-20Zr
 - U-28Pu-7Am-30Zr

Microstructural Analysis of Pu-40Zr

X-Ray Maps of Pu-40Zr

- Alloy is single-phase
- Even distribution of Pu and Zr
- Agrees with published Pu-Zr phase diagram

Microstructural Analysis of Pu-12Am-40Zr

X-Ray Maps of Pu-12Am-40Zr

BSE Image

Pu

- Alloy is single-phase
- Even distribution of Pu, Am, and Zr
- Am stabilizes δ-Pu

Microstructural Analysis of Pu-10Am-10Np-40Zr

X-Ray Maps of Pu-10Am-10Np-40Zr

Thermal Analysis of Non-fertile Alloys

- Identification of Phase Transitions up to 1000°C
 - Pu-12Am-40Zr
 - Pu-10Np-40Zr
 - Pu-10Am-10Np-40Zr
 - Pu-40Zr
 - Pu-60Zr
 - No melting observed in these alloys to 1000°C
- Analysis Techniques
 - Differential Scanning Calorimetry (DSC)
 - Differential Thermal Analysis (DTA)
 - Thermo-Mechanical Analyzer (TMA)

Pu-40Zr

fcc to bcc transition from published phase diagram: 640°C

Pu-12Am-40Zr

Pu-10Am-10Np-40Zr

Pu-10Np-40Zr

Fuel-Cladding Chemical Interaction

- Diffusion Couples
 - HT-9 (Type 422 SS) vs.
 - Pu-12Am-40Zr
 - Pu-10Np-40Zr
 - Pu-10Am-10Np-40Zr
 - Pu-40Zr
 - Pu-60Zr
 - Furnace anneals
 - 50 to 200 hours
 - 650°C
 - 850°C
 - Analysis
 - SEM/EDS/WDS

FCCI Results

At 650°C

- No uniform diffusion layers observed
- Discrete Fe-rich globular precipitates observed penetrating into fuel alloy

At 850°C

- Complete interdiffusion of fuel alloy and cladding
- Same discrete Fe-rich precipitates throughout fuel
- Also discrete Zr-rich precipitates throughout fuel
- No melting

Conclusions

- Fe-rich and Zr-rich phases have high melting points
- No actinide-rich, low-melting phases observed
- With no diffusion layers formed at fuel-clad interface, cladding should retain nominal mechanical properties

BSE Micrographs of Diffusion Couples (650°C for 50 hours)

Pu-60Zr/422

BSE Micrographs of Diffusion Couples (650°C for 200 hours)

Pu-40Zr/422

- Pu-10Am-10Np-40Zr/422
- Fe/(Cr) deposits observed out to 1000 microns of interface
- Other dark features throughout fuel are pores

BSE Micrographs of Diffusion Couples (860°C for 50 hours)

Pu-40Zr/422

Complete interdiffusion in couples with Pu-10Np-40Zr, Pu-12Am-40Zr and Pu-10Am-10Np-40Zr with similar structures

steel

Irradiation Test Fabrication/Assembly

- AFC-1B, -1D Test Capsules
 - Fabricated and assembled 5/03
 - Delivered to ATR on June 3, 2003
 - Irradiation in progress
- AFC-1Æ, -1F Test Capsules
 - Hardware fabrication complete
 - Assembly scheduled for 9/03
 - Irradiation to begin in 11/03

Q9123e

Postirradiation Examination

- Plans for Postirradiation Examination
 - AFC-1A,B,C,D PIE Plan issued in January 2003
 - AFC-1Æ,F PIE Plan issued in May 2003
- Preparations Initiated to Receive GE-2000 Cask at the Hot Fuel Examination Facility (June 2004)

